
Integration

Liming Pang

Recall that in the previous section, we develop a method to compute
the area under a curve y = f(x). In particular, we used limn→∞Rn and
limn→∞ Ln.

This method can be generalized. First, after dividing [a, b] into n subin-
tervals of size b−a

n
, instead of choosing the right or left endpoint of each

subinterval, we can actually choose any point x∗i in [xi−1, xi], so

A = lim
n→∞

n∑
i=1

f(x∗i )∆x

Now we are going to generalize it further: f is a function defined on [a, b]
(now we do not assume f being continuous or positive) We divide [a, b] into
n smaller subintervals a = x0 < x1 < ... < xn = b (now we do not assume the
subintervals are of equal length) We say [x0, x1], [x1, x2], ..., [xn−1, xn] form a
partition of [a, b]. For each [xi−1, xi], let ∆xi = xi− xi−1, which is the length
of this interval. We choose sample points x∗i from [xi−1, xi], and define a
Riemann Sum associated with f and a partition of [a, b] to be

n∑
i=1

f(x∗i )∆xi

Geometrically, it corresponds to figure
when f(x∗i ) < 0, we see f(x∗i ) is the negative of the corresponding area

of the rectangle.
Observe that although we didn’t cut the intervals in an evenly manner,

as long as all the subintervals are very small, the region covered by these
rectangles is a good approximation of the region bounded by y = f(x) on
[a, b]. If we define the area above x-axis to be positive and below to be
negative, we see

∑n
i=1 f(x∗i )∆xi is a good approximation of the area of the

region bounded by y = f(x) and [a, b]. This motivates the following definition
of definite integrals.
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Figure 1: Riemann Sum

Definition 1. If f is a function defined on [a, b], the definite integral of f
from a to b is the number∫ b

a

f(x) dx = lim
max ∆xi→0

n∑
i=1

f(x∗i )∆xi

provided that this limit exists. If it does exist, we say f is integrable on [a, b].
f is called the integrand, and the process of calculating an integral is called
integration.

The definite integral represents the area of the region between y = f(x)
and x-axis, with the convention that the area is positive above x-axis and
negative below x-axis.

Figure 2: Definite Integral

Theorem 2. If f is continuous on [a, b], or f only has finitely many jumping
discontinuity points, then f is integrable on [a, b].
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Recall that in the definition of Riemann Sum, there is no restriction on the
subdivision of [a, b] and the choice of x∗i , as long as when we take max ∆xi →
0, the Riemann Sum will be the definite integral

∫ b

a
f(x) dx. So we may take

a good choice of Riemann Sum that is convenient for computation.

Example 3. Evaluate
∫ 3

0
(x3−6x) dx. (We may need the identity

∑n
k=1 k

3 =

(n(n+1)
2

)2)

We may divide [0, 3] into n subintervals of size 3
n

with endpoints x0 =
0, x1 = 3

n
, x2 = 6

n
, ..., xi = 3i

n
, ..., xn = 3. We see as n → ∞, all ∆xi → 0,

max ∆xi → 0. We take x∗i = xi = 3i
n

, then

∫ 3

0

f(x) dx = lim
n→∞

n∑
i=1

f(x∗i )∆xi

= lim
n→∞

n∑
i=1

[(
3i

n
)3 − 6× 3i

n
]
3

n

= lim
n→∞

81

n4

n∑
i=1

i3 − lim
n→∞

54

n2

n∑
i=1

i2

= lim
n→∞

81

n4
(
n(n + 1)

2
)2 − lim

n→∞

54

n2

n(n + 1)

2

= lim
n→∞

81

4
(
n + 1

n
)2 − lim

n→∞
27× n + 1

n

= −27

4

Proposition 4. (Midpoint Rule)∫ b

a

f(x) dx ≈
n∑

i=1

f(x̄i)∆x

where ∆x = b−a
n

and x̄i = xi−1+xi

2

Example 5. Use the midpoint rule with n = 5 to approximate
∫ 2

1
1
x
dx
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∆x = 2−1
5

= 0.2, the five subintervals are [1, 1.2], [1.2, 1.4], [1.4, 1.6], [1.6, 1.8], [1.8, 2],
and the midpoints are 1.1, 1.3, 1.5, 1.7, 1.9∫ 2

1

1

x
dx = (f(1.1) + f(1.3) + f(1.5) + f(1.7) + f(1.9))× 0.2

= (
1

1.1
+

1

1.1
+

1

1.1
+

1

1.1
+

1

1.1
)× 0.2

≈ 0.691908

Definition 6. If a > b, we define
∫ b

a
f(x) dx = −

∫ a

b
f(x) dx. Also we define∫ a

a
f(x) dx = 0

Proposition 7. Suppose the following integrals exist, then:

1.
∫ b

a
C dx = C(b− 1), where C is a constant.

2.
∫ b

a
f(x)± g(x) dx =

∫ b

a
f(x) dx±

∫ b

a
g(x) dx

3.
∫ b

a
Cf(x) dx = C

∫ b

a
f(x) dx, where C is a constant

4. If f(x) ≥ g(x) on [a, b], then
∫ b

a
f(x) dx ≥

∫ b

a
g(x) dx

5. If f(x) ≥ 0 on [a, b], then
∫ b

a
f(x) dx ≥ 0

6. If m ≤ f(x) ≤M on [a, b], then m(b− a) ≤
∫ b

a
f(x) dx ≤M(b− a)

7.
∫ b

a
f(x) dx +

∫ c

b
f(x) dx =

∫ c

a
f(x) dx

8.
∫ d

a
f(x) dx−

∫ c

b
f(x) dx =

∫ b

a
f(x) dx +

∫ d

c
f(x) dx

Example 8. Consider
∫ 1

0
e−x

2
dx. We know on [0, 1], e−1 ≤ e−x

2 ≤ e0 = 1,
so

1

e
= e−1(1− 0) ≤

∫ 1

0

e−x
2

dx ≤ 1× (1− 0) = 1
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